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ABSTRACT
Despite extensive efforts to meet ever-growing demands, to-
day’s datacenters often exhibit far-from-optimal performance
in terms of network utilization, resiliency to failures, cost ef-
ficiency, incremental expandability, and more. Consequently,
many novel architectures for high performance datacenters
have been proposed. We show that the benefits of state-of-
the-art proposals are, in fact, derived from the fact that they
are (implicitly) utilizing "expander graphs" (aka expanders)
as their network topologies, thus unveiling a unifying theme
of these proposals. We observe, however, that these pro-
posals are not optimal with respect to performance, do not
scale, or suffer from seemingly insurmountable deployment
challenges. We leverage these insights to present Xpander, a
novel datacenter architecture that achieves near-optimal per-
formance and provides a tangible alternative to existing dat-
acenter designs. Xpander’s design turns ideas from the rich
graph-theoretic literature on constructing optimal expanders
into an operational reality. We evaluate Xpander via theoret-
ical analyses, extensive simulations, experiments with a net-
work emulator, and an implementation on an SDN-capable
network testbed. Our results demonstrate that Xpander sig-
nificantly outperforms both traditional and proposed data-
center designs. We discuss challenges to real-world deploy-
ment and explain how these can be resolved.
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1. INTRODUCTION
The rapid growth of Internet services is placing tremen-

dous demands on datacenters. Yet, as evidenced by the ex-
tensive research on improving datacenter performance [22,
23, 6, 46, 50, 21, 43], today’s datacenters often exhibit far-
from-optimal performance in terms of network utilization,
resiliency to failures, cost efficiency, amenability to incre-
mental growth, and beyond.

1.1 The Secret to High Performance
We show that state-of-the-art proposals for next-gener-

ation datacenters, e.g., low-diameter networks such as Slim
Fly [8], or random networks like Jellyfish [46], have an im-
plicit unifying theme: utilizing an “expander graph” [24] as
the network topology and exploiting the diversity of short
paths afforded by expanders for efficient delivery of data
traffic. Thus, our first contribution is shedding light on the
underlying reason for the empirically good performance of
previously proposed datacenter architectures, by showing that
these proposals are specific points in a much larger design
space of “expander datacenters”. We observe, however, that
these points are either not sufficiently close to optimal
performance-wise, are inherently not scalable, or face signif-
icant deployment and maintenance challenges (e.g., in terms
of unpredictability and wiring complexity).

We argue that the quest for high-performance datacen-
ter designs is inextricably intertwined with the rich body of
research in mathematics and computer science on building
good expanders. We seek a point in this design space that
offers near-optimal performance guarantees while provid-
ing a practical alternative for today’s datacenters (in terms
of cabling, physical layout, backwards compatibility with
today’s protocols, and more). We present Xpander, a novel
expander-datacenter architecture carefully engineered to achi-
eve both these desiderata.

Importantly, utilizing expanders as network topologies has
been proposed in a large variety of contexts, ranging from
parallel computing and high-performance computing [47, 14,
13, 8] to optical networks [39] and peer-to-peer networks [38,
37]. Our main contributions are examining the performance
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and operational implications of utilizing expanders in the
datacenter networking context, and seeking optimal design
points in this specific domain (namely, Xpander). Indeed,
despite the large body of research on expanders, many as-
pects of using expanders as datacenter networks (e.g., through-
put-related performance measures, specific routing and con-
gestion control protocols, deployment costs, incremental gro-
wth, etc.) remain little understood. We next elaborate on
expanders, expander datacenters, and Xpander.

1.2 Why Expanders?
Intuitively, in an expander graph the total capacity from

any set of nodes S to the rest of the network is large with
respect to the size of S. We present a formal definition of
expanders in Section 2. Since this implies that in an ex-
pander every cut in the network is traversed by many links,
traffic between nodes is (intuitively) never bottlenecked at
a small set of links, leading to good throughput guarantees.
Similarly, as every cut is large, every two nodes are (intu-
itively) connected by many edge-disjoint paths, leading to
high resiliency to failures. We validate these intuitions in
the datacenter context.

Constructing expanders is a prominent research thread in
both mathematics and computer science. In particular, build-
ing well-structured, deterministic expanders has been the sub-
ject of extensive study (see, e.g., [32, 30, 41]).

1.3 Why Expander Datacenters?
We refer to datacenter architectures that employ an ex-

pander network topology as “expander datacenters”. We
evaluate the performance of various expander datacenters
through a combination of formal analyses, extensive flow-
level and packet-level simulations, experiments with the mini-
net network emulator, and implementation on an SDN-capable
network testbed (OCEAN [3]).

Our results reveal that expander datacenters achieve near-
optimal network throughput, significantly outperforming tra-
ditional datacenters (fat trees [6]). We show, in fact, that
expander datacenters can match the performance of today’s
datacenters with roughly 80− 85% of the switches. Beyond
the above improvements in performance, our results estab-
lish that expander datacenters are significantly more robust
to network changes than today’s datacenters.

Studies of datacenter traffic patterns reveal tremendous
variation in traffic over time [7]. Unfortunately, a network
topology that fares well in one traffic scenario might fail
miserably in other scenarios. We show that expander dat-
acenters are robust to variations in traffic. Specifically, an
expander datacenter provides close-to-optimal performance
guarantees with respect to any (even adversarially chosen!)
traffic pattern. We show, moreover, that no other network
topology can do better. The performance of expander data-
centers also degrades much more gracefully than fat trees in
the presence of network failures.

Alongside the above merits, expander datacenters, unlike
today’s rigid datacenter networks, can be incrementally ex-
panded to any size while preserving high performance, thus
meeting the need to constantly grow existing datacenters.

1.4 Why Xpander?
While our results indicate that expander datacenters uni-

versally achieve high performance, different expander data-
centers can differ greatly both in terms of the exact level of
performance attained, and in terms of their deployability. We
thus seek a point in the space of expander datacenters that
achieves near-optimal performance while presenting a prac-
tical alternative for today’s datacenters. We present Xpander,
which we regard as a good candidate for such a point. We
evaluate Xpander’s performance guarantees, showing that it
achieves the same level of performance as random networks,
the current state-of-the-art with respect to performance [46,
45, 25] (but which suffer from severe impediments to de-
ployment, as discussed later), and that it outperforms low-
diameter datacenter designs (namely, Slim-Fly [8]).

We analyze the challenges facing the deployment of Xpa-
nder in practice through detailed investigations of various
scenarios, from “container datacenters” to large-scale data-
centers. Our analyses provide evidence that Xpander is re-
alizable with monetary and power consumption costs that
are comparable or lower than those of today’s prevalent dat-
acenter architectures and, moreover, that its inherent well-
structuredness and order make wiring Xpanders manageable
(avoiding, e.g., the inherent unstructuredness and complex-
ity of random network designs a la Jellyfish [46]).

1.5 Organization
We provide a formal exposition of expanders and expander

datacenters in Section 2, and of Xpander in Section 3. We
show that expander datacenters such as Xpander indeed at-
tain near-optimal performance in Section 4, matching the
performance of randomly networked datacenters. We com-
pare Xpander to fat trees [6] and Slim Fly [8] in Sections 5
and 6, respectively. We discuss deployment challenges and
solutions in Section 7, and related work in Section 8. We
conclude in Section 9. Due to space constraints, our proofs
and some additional materials appear in the Xpander project
webpage [5].

2. EXPANDER DATACENTERS
We provide below a formal exposition of expanders. We

discuss past proposals for high-performance datacenters and
explain why these are, in fact, “expander datacenters”.

Consider an (undirected) graphG = (V,E), where V and
E are the vertex set and edge set, respectively. For any subset
of vertices S, let |S| denote the size of S, let ∂(S) denote
the set of edges leaving S, and let |∂(S)| denote the size
of ∂(S). Let n denote the number of vertices in V (that is,
|V |). The edge expansionEE(G) of a graphG on n vertices
is EE(G) = min|S|≤n

2

|∂(S)|
|S| . We say that a graph G is d-

regular if the degree of each vertex is exactly d. We call a
d-regular graph G an expander if EE(G) = c · d for some
constant c > 0. We note that the edge expansion of a d-
regular graph cannot exceed d

2 .1 Constructions of expanders

1This is what is achieved by a random bisection and thus the
worst bisection is no better.



whose edge expansion (asymptotically) matches this upper
bound exist (see more below).

We refer to datacenters that rely on an expander graph as
their network topology as “expander datacenters”. We con-
sider two recent approaches to datacenter design that have
been shown to yield significantly better performance than
both today’s datacenters and many other proposals: low-
diameter networks, e.g., Slim Fly [8], and randomly net-
worked datacenters, e.g., Jellyfish [46]. We observe that
these two designs are, in fact, expander datacenters. We
show in the subsequent sections that this is indeed what ac-
counts for their good performance.

Randomly networked datacenters. Recent studies [46, 45]
show that randomly networked datacenters achieve close-to-
optimal performance guarantees. Indeed, to date, randomly
networked datacenters remain the state-of-the-art
(performance-wise) in terms of network throughput, resilien-
cy to failures, incremental expandability, and more. Our re-
sults for expander datacenters suggest that these merits of
randomly-wired, d-regular, datacenters are derived from the
fact that they achieve near-optimal edge expansion (close to
d
2 ), as established by classical results in random graph the-
ory [10, 18].

Unfortunately, the inherent unstructuredness of random
graphs makes them hard to reason about (diagnose and trou-
bleshoot problems, etc.) and build (e.g., cable), and thus
poses serious, arguably insurmountable, obstacles to their
adoption. Worse yet, as with any probabilistic construct, the
good traits of random graphs are guaranteed only with some
probability. Hence, while utilizing random network topolo-
gies in datacenters is an important thought experiment, the
question arises: Can a well-structured and deterministic con-
struction achieve the same benefits always (and not prob-
abilistically)? We show later that Xpander indeed accom-
plishes this.

Low-diameter datacenters. Slim Fly [8] (SF) leverages a
graph-theoretic construction of low-diameter graphs [33] (of
diameter 2 or 3). Intuitively, by decreasing the diameter, less
capacity is wasted when sending data, and hence overall per-
formance is higher. As shown in [8], SF outperforms both
existing and proposed datacenter architectures, but performs
worse than random network topologies. We present the fol-
lowing new theoretical result for SF, showing that SF is a
good expander. The proof appears in [5].

THEOREM 2.1. A Slim-Fly network of degree d and di-
ameter 2 has edge expansion at least d

3 − 1.

This result suggests that SF’s good edge expansion may,
in fact, be the explanation for its good performance, and
not its low diameter. Indeed, our findings (see Section 6)
suggest that by optimizing the diameter-size tradeoff, Slim
Fly sacrifices a small amount of expansion, which leads to
worse performance than random networks (and Xpander) as
the network gets larger. Worse yet, the low diameter of SF
imposes an extremely strict condition on its size (as a func-
tion of port count of each switch), imposing, in turn, a strict
limit on the scalability of Slim Fly. Xpander, in contrast, can

(a) (b) (c)

Figure 1: Illustration of 2-Lift

be constructed for virtually any given switch port-count and
network size, as discussed in Section 6.

Other expander datacenters. A rich body of literature in
mathematics and computer science deals with constructions
of expanders, e.g., Margulis’s construction [32], algebraic
constructions [30], and constructions that utilize the so-called
“zig-zag product” [41]. Such constructions can be leveraged
as network topologies in the design of expander datacen-
ters. For example, our construction of the Xpander data-
center topology utilizes the notion of 2-lifting a graph, intro-
duced by Bilu and Linial [9, 31] (see Section 3). However, as
evidenced by the above discussion, different choices of ex-
panders can yield different performance benefits and greatly
differ in terms of deployability. We next discuss the Xpander
architecture, designed to achieve near-optimal performance
and deployability.

3. XPANDER: OVERVIEW AND DESIGN
In light of the limitations of past proposals, our goal is to

identify a datacenter architecture that achieves near-optimal
performance yet overcomes deployment challenges. We next
present the Xpander datacenter design, and show that it in-
deed accomplishes these desiderata.

3.1 Network Topology
Lifting a graph. Consider the graph G depicted in Fig-
ure 1(a). Our construction of Xpander leverages the idea
of “lifting” a graph [9, 14]. We start by explaining 2-lifts. A
2-lift of G is a graph obtained from G by (1) creating two
vertices v1 and v2 for every vertex v in G; and (2) for every
edge e = {u, v} in G, inserting two edges (a matching) be-
tween the two copies of u (namely, u1 and u2) and the two
copies of v (namely, v1 and v2). Figure 1(b) is an exam-
ple of a 2-lift of G. Observe that the pair of vertices v1 and
v2 can be connected to the pair u1 and u2 in two possible
ways, described by the solid and dashed lines in Figure 1(c).
When the original graphG is an expander, the 2-lift ofG ob-
tained by choosing between every two such options at ran-
dom is also an expander with high probability [9]. Also,
these simple random choices can be derandomized, i.e., the
same guarantee can be derived in a deterministic manner [9].

2-lifting can be generalized to k-lifting for arbitrary val-
ues of k in a straightforward manner: create, for every vertex
v in G, k vertices, and for every edge e = {u, v} in G, in-
sert a matching between the k copies of u and the k copies
of v. As with 2-lifting, k-lifting an expander graph via ran-
dom matchings results in a good expander [14, 17]. We are



Figure 2: An Xpander topology sketch

Figure 3: Division of an Xpander into Xpander-pods.

unaware of schemes for de-randomizing k-lifts for k > 2.
However, we show empirically that k-lifts for k > 2 can
also be derandomized (see [5]).

Xpander’s network topology. To construct a d-regular Xpan-
der network, where each node (vertex) represents a top-of-
rack (ToR) switch, and d represents the number of ports per
switch used to connect to other switches (all other ports are
connected to servers within the rack), we do the following:
start with the complete d-regular graph on d+ 1 vertices and
repeatedly lift this graph in a manner that preserves expan-
sion.

Although lifting a graph (at least) doubles the number of
nodes, we show in Section 4.3 how Xpander topologies can
be incrementally grown (a single node at a time) to any de-
sired number of nodes while retaining good expansion.

Selecting the “right” Xpander. Today’s rigid datacenter
network topologies (e.g., fat trees) are only defined for very
specific combinations of number of nodes (switches) n and
per-node degree (port count) d. An Xpander, in contrast, can
be generated for virtually any combination of n and d by
varying the number of ports used for inter-switch connec-
tions (and, consequently, for switch-to-server connections),
or through the execution of different sequences of k-lifts.
The choice of specific Xpander depends on the objectives
of the datacenter designer, e.g., minimizing network equip-

ment (switches/links) while maintaining a certain level of
performance. See Section 5 for a few more details. To se-
lect the “right” Xpander, the datacenter architect can play
with Xpander’s construction parameters to generate several
Xpander networks of the desired size, number of servers sup-
ported, etc., and then measure their performance, in terms of
expansion2 and throughput, to identify the best candidate.

3.2 Xpander’s Logical Organization

Observe that, as described in Figure 2, an Xpander net-
work can be regarded as composed of multiple “meta-nodes”
such that (1) each meta-node consists of the same number of
ToRs, (2) every two meta-nodes are connected via the same
number of links, and (3) no two ToRs within the same meta-
node are directly connected. Each meta-node is, essentially,
the group of nodes which correspond to one of the original
d+ 1 nodes. Also, an Xpander can naturally be divided into
smaller Xpanders (“Xpander-pods”), each of the form de-
picted in Figure 2, such that each pod is simply a collection
of meta-nodes. See Figure 3 for an illustration of an Xpander
with 9 meta-nodes (i.e., d = 8), divided into 3 equal-sized
pods. Observe that division of an Xpander into Xpander-
pods need not be into pods of the same size.

We show in Section 7 how this “clean” structure can be
leveraged to tame cabling complexity.

3.3 Routing and Congestion Control
To exploit Xpander’s rich path diversity, traditional rout-

ing with ECMP and TCP congestion control are insufficient [5].
Xpander thus, similarly to [46], employs multipath routing
via K-shortest paths [51, 16] and MPTCP congestion con-
trol [49]. K-shortest paths can be implemented in several
ways, including OpenFlow rule matching [34], SPAIN [35],
and MPLS tunneling [42].

4. NEAR-OPTIMAL PERFORMANCE
We show that Xpander achieves near-optimal performance

in terms of throughput and bisection bandwidth guarantees,
robustness to traffic variations, resiliency to failures, incre-
mental expandability, and path lengths. Both our simulations
and theoretical results benchmark Xpander against a (pos-
sibly unattainable) theoretical upper bound on performance
for any datacenter network. To benchmark also against the
state-of-the-art, we show that Xpander matches the near-
optimal performance of random datacenter architectures, de-
monstrated in [46, 45]. We will later explain how Xpander’s
design mitigates the deployment challenges facing randomly
networked datacenters (Section 7).

We note that Xpander’s near-optimal performance bene-
fits are derived from utilizing a nearly optimal expander net-
work topology [9]. Indeed, our results for Xpander’s perfor-
mance extend to all expander datacenters whose d-regular
network topology exhibits near-optimal edge expansion (i.e.,
2Importantly, computing edge expansion is, in general, com-
putationally hard [28], yet edge expansion can be approxi-
mated via the tractable notion of spectral gap [24].



(a) k = 14. There are 4 servers placed under each switch (b) k = 18. There are 4 servers placed under each switch.

Figure 4: Results for all-to-all throughput

(a) Xpander (b) Jellyfish

Figure 5: Results for K-Shortest & MPTCP with K = #Subflows. 6 servers placed under each 36-port switch.

edge expansion close to d
2 ), such as random networks and

algebraic constructions of expanders [30]. To simplify ex-
position, our discussion below focuses on Xpander and Jel-
lyfish [46]. We refer the reader to [5, 48] for more results for
other expander datacenters.

4.1 Near-Optimal Throughput

4.1.1 Simulation Results
Simulation framework. We ran simulations on Xpander
networks for many choices of number of nodes n and node-
degree d. The node degree d in our simulations refers only
to the number of ports of a switch used to connect to other
switches and not to switch-to-server ports. We henceforth
use k to refer to the total number of ports at each switch
(used to connect to either other switches or servers). We
tested every even degree in the range 6-30 and up to 600
switches (and so thousands of servers) using a flow-level
simulator described below. As our simulations show the ex-
act same trends for all choices of parameters, we display
figures for selected choices of n and d. To validate that
Xpanders indeed achieve near-optimal performance, we bench-
marked Xpanders also against Jellyfish’s performance (aver-
aged over 10 runs). We also simulate large Xpander net-
works, the largest supporting 27K servers, using the MP-
TCP packet simulator [2].

We compute the following values for every network topol-
ogy considered: (1) the maximum all-to-all throughput, that
is, the maximum amount of flow-level traffic α that can be
concurrently routed between every two switches in the net-
work without exceeding link capacities (see formal defini-
tion in Section 4.1.2); (2) the flow-level throughput under
skewed traffic matrices (elephants and mice); and (3) the
throughput under K-shortest paths [51] combined with MPTCP.
Intuitively, (1)+(2) capture the maximum flow achievable
when the full path diversity of Xpanders and Jellyfish can be
exploited, whereas (3) captures the packet-level performance
under Xpander’s routing and congestion control. Thus, our
simulations quantify both the best (flow-level) throughput
achievable and how closely Xpander’s routing and conges-
tion control protocols approach this optimum.

To compute (1)+(2), our simulations ran the CPLEX opti-
mizer [1] on a 64GB, 16-core server. Our simulation frame-
work is highly-optimized, allowing us to investigate data-
center topologies with significantly higher parameter val-
ues (numbers of switches n, servers, and per switch port
counts d) than past studies. To compute the throughput un-
der K-shortest paths and MPTCP we use the MPTCP packet-
level simulator [2]. We later validate these results using the
mininet network emulator [27] (Section 5.3).



Results. Figure 4 describes our representative results for
all-to-all throughput (the y-axis) as a function of the num-
ber of servers in the network (the x-axis) when the switch’s
inter-switch degree (ports used to connect to other switches)
is d = 10 (left) and d = 14 (right). The results are nor-
malized by the theoretical upper bound on the throughput of
any network [45]. To show that our results are not specific
to Xpander of Jellyfish, but extend to all network topolo-
gies with comparable edge expansion, Figure 4 also plots
the performance of 2-lifts of the algebraic construction of
expanders due to Lubotzky et al. [30], called “LPS”. To eval-
uate LPS-based expanders of varying sizes, we generated
an LPS expander and then repeatedly 2-lifted it to gener-
ate larger expanders (the subscript in the figure specifies the
number of nodes in the initial LPS expander, before 2-lifting).
More results for other expander datacenters can be found
in [5].

Clearly, the achieved performance for all evaluated ex-
pander datacenters is essentially identical and is close to the
(possibly unattainable) theoretical optimum. Note that there
is a dip in the performance, but as explained in [45], this is
a function of how the upper bound, which at this point be-
comes unattainable, is calculated. Even here, however, both
Xpander and Jellyfish remain fairly close to the (unattain-
able) upper bound. We show in the subsequent sections that
this level of performance is above that of both today’s data-
centers and Slim Fly [8].

We also measured, using the MPTCP packet-level simu-
lator [2], the average per-server throughput (as a percentage
of the servers’ NIC rate) for different choices of parameter
K in K-shortest paths. Specifically, we measured (1) the
throughput when the number of MPTCP subflows is 8 (the
recommended value [46, 49]), and (2) the throughput when
the number of subflows equals K. We present our represen-
tative results in Figure 5, where we use d = 30 and up to 496
switches (or nearly 3K servers). The results for other choices
of d and n exhibit the same trends. Our results show that
whenK ≥ 6 and the number of MPTCP subflows equalsK,
the server average throughput is very close to its maximum
outgoing capacity.

We also evaluated the throughput of Xpander for skewed
traffic matrices, where each of T randomly-chosen pairs of
nodes wishes to transmit a large amount of traffic, namely
β units of flow, and all other pairs only wish to exchange a
single unit of flow (as in the all-to-all scenario). We simu-
lated this scenario for network size n = 250, every even d =
2, 4, . . . , 24, and all combinations of T ∈ {1, 6, 11, . . . , 46}
and β ∈ {4, 40, 400}.

For each choice of parameters, we computed the network
throughput α, that is, the maximum fraction of each traf-
fic demand that can be sent through the network concur-
rently without exceeding link capacities. The results are
again normalized by a simple theoretical (and unattainable)
upper bound on any network’s throughput for these traffic
demands (calculation omitted). Our simulation results for
skewed traffic matrices show that the throughput achieved
by Xpander is almost always (over 96% of results) within
15% of the optimum throughput, and typically within 5 −

Distance from Optimum Xpander JellyFish
throughput<80% <1% <1%
80% ≤ throughput <85% 2.3% 2.3%
85% ≤ throughput <90% 16.14% 16.14%
90% ≤ throughput <95% 44.48% 48.03%
95% ≤ throughput 36.61% 32.67%

Table 1: Distance of throughput from the (unattainable) op-
timum for various combinations of β, T, d.

Figure 6: Throughput under link failures.

10% from the theoretical optimum. See Table 1 for a break-
down of the results. We use the MPTCP simulator to com-
pare Xpander to fat trees in Section 5, showing that Xpander
provides the same level of performance with much fewer
switches.

4.1.2 Theoretical Results
Near-optimal bisection bandwidth. Recall that bisection
bandwidth is the minimum number of edges (total capacity)
traversing a cut whose sides are of equal size [52], or for-
mally minS:|S|=n

2
|∂(S)| using the notation from Section 2.

Since in an expander intuitively all cuts are large, not sur-
prisingly Xpander indeed achieves near-optimal bisection band-
width. Note that the bisection bandwidth of any d-regular
graph is at most n

2 ·
d
2 = nd

4 .3

THEOREM 4.1. An Xpander graph on n vertices has bi-
section bandwidth at least n

2

(
d
2 −O(d3/4)

)
.

Moreover, the definition of edge expansion of a graph G,
EE(G), immediately implies the bisection bandwidth of an
arbitrary d-regular graph is at least n

2 · EE(G), and so even
in an arbitrary d-regular expander the bisection bandwidth
must be quite high.

Near-optimal throughput. We consider the following sim-
ple fluid-flow model of network throughput [25]: A network
is represented as a capacitated graph G = (V,E), where
vertex set V represents (top-of-rack) switches and edge set
E represents switch-to-switch links. All edges have a capac-
ity of 1. A traffic matrix T specifies, for every two vertices
(switches) u, v ∈ V , the total amount of requested flow Tu,v
3This is what is achieved by a random bisection and thus the
worst bisection is no better.



(a) k = 32. There are 8 servers placed under each switch. (b) k = 48. There are 12 servers placed under each switch.

Figure 7: Results for avg. path length

from servers connected to u to servers connected to v. The
network throughput under traffic matrix T is defined as the
maximum value α such that α ·Tu,v flow can be routed con-
currently from each vertex u to each vertex v without ex-
ceeding the link capacities. For a graph G and traffic matrix
T , let α(G,T ) denote the throughput ofG under T . We refer
to the scenario in which Tu,v = 1 for every u, v ∈ V (i.e. ev-
ery node aims to send 1 unit of flow to every other node) as
the “all-to-all setting”. We will slightly abuse notation and
let α(G) denote the throughput of G in the all-to-all setting.

We present several simple-to-prove results on the through-
put guarantees of expander datacenters. Beyond accounting
for Xpander’s good performance, these results also account
for the good performance of other expander datacenters, e.g.,
Jellyfish and Slim Fly. While possibly folklore, to the best
of our knowledge, these results do not appear to have been
stated or proven previously. We thus include them here for
completeness.

THEOREM 4.2. In the all-to-all setting, the throughput
of a d-regular expander G on n vertices is within a factor of
O(log d) of that of the throughput-optimal d-regular graph
on n vertices.

The next two results, when put together, show that ex-
panders (and so also Xpander) are, in a sense, the network
topology most resilient to adversarial traffic scenarios.

THEOREM 4.3. For any traffic matrix T and d-regular
expander G on n vertices, α(G,T ) is within a factor of
O(log n) of that of the throughput optimal d-regular graph
on n vertices with respect to T .

THEOREM 4.4. For any d-regular graphG on n vertices,
there exists a traffic matrix T and a d-regular graph G∗ on
n vertices such that α(G∗, T ) ≥ Ω(logd n) · α(G,T ).

4.2 Near-Optimal Resiliency to Failures
It is easy to prove that in any d-regular expander data-

center, the number of edge-disjoint paths between any two
vertices is exactly d [5]. Since this is the maximum possible
number of such paths in a d-regular graph, Xpander’s net-
work topology provides optimal connectivity between any

Figure 8: Throughput under incremental expansion for k =
32, incrementally adding 1 switch and 8 servers at each step.

two communicating end-points and can thus withstand the
maximum number of link-failures (specifically, d− 1) with-
out disconnecting two switches.

We compute the all-to-all server-to-server throughput in
Xpander and Jellyfish after failing X links uniformly at ran-
dom, where X ranges from 0% to 30% in increments of 3%.
We repeated this for Xpander networks of many sizes and
node-degrees. Figure 6 shows our (representative) results
for Xpander and Jellyfish of 708 servers and 236 14-ports
switches (with one switch port left unused). As shown in the
figure, the throughput of Xpander degrades linearly with the
failure rate. We show in Section 5 through both flow-level
and packet-level simulations that the throughput of Xpanders
indeed dominates that of fat trees (both with and without fail-
ures).

Intuitively, this linear dependence on the failure rate is
natural. If the probability of link failure is p, then after fail-
ures the graph is similar to a ((1 − p)d)-regular Xpander.
This is because for each cut S the number of edges across
it (|∂(S)|) before failure was large, owing to G being an ex-
pander, and so after failure the number of edges across the
cut is tightly concentrated around its expectation, which is
(1− p)|∂(S)|.

4.3 Incremental Expandability
Companies such as Google, Facebook and Amazon con-

stantly expand existing datacenters to meet ever-growing de-



mands. A significant advantage of random graphs (i.e., Jel-
lyfish [46]) over traditional datacenter topologies (e.g., fat
trees) is the ability to incrementally expand the network with-
out having to leave many ports unused etc.

We present a deterministic heuristic for incrementally ex-
panding a d-regular expander datacenter with few wiring
changes when adding a new node (ToR): To add a new node
to the datacenter, disconnect d

2 existing links and connect the
d incident nodes (ToRs) to the newly added node (recall that
d is the number of ports used to connect to other switches).
Observe that this is indeed the minimal rewiring needed as at
least d

2 links must be removed to “make room” for the new
switch. The key challenge is selecting the links to remove.
Intuitively, our heuristic goes over all links and quantifies the
loss in edge expansion from removing each link, and then
removes the d

2 links whose removal is the least harmful in
this regard. Importantly, since computing edge expansion is,
in general, computationally hard [28], our heuristic relies on
the tractable notion of spectral gap [24], which approximates
the edge expansion. We refer the reader to [5] for a technical
exposition of this heuristic.

We compute the all-to-all throughput of topologies that
are gradually expanded from the complete d-regular graph
using our deterministic incremental growth algorithm, and
compare them to the theoretical upper bound on the through-
put of any d-regular datacenter network.

Figure 8 shows the all-to-all throughput results for an Xpan-
der with 32-port switches. At each size-increment-step, one
switch (and 8 servers) is added, thus gradually growing the
datacenter network from 200 servers to 900 servers. As
shown in Figure 8, all Xpander datacenter networks obtained
in this manner achieve near-optimal throughput. We com-
pare Xpander against the incremental growth of Jellyfish, as
presented in [46].

4.4 Short Path-Lengths and Diameter
As shown in Figure 7, all evaluated Xpander (and Jelly-

fish) networks exhibit the same average shortest path lengths
and are, in fact, usually within 5% of the lower bound on av-
erage path length in [12]. (Results for many other choices of
n and d lead to the same conclusion.) Thus, Xpander effec-
tively minimizes the average path length between switches.

A straightforward argument (omitted) shows that dlogd ne
is a lower bound on the diameter of a d-regular graph. All
Xpanders evaluated are within just 1 hop from this theoreti-
cal lower bound. See [5] for an exposition of our results for
network diameter.

5. XPANDER VS. FAT TREE
We next detail the significant performance benefits of Xpan-

der datacenters over fat trees. We show that Xpander can
support the same number of servers as a fat tree at the same
(or better) level of performance with only about 80 − 85%
of the switches. We also show that Xpander is more resilient
to failures.

fat tree
Degree #Switches #Servers Throughput

8 80% 100% 121%
10 100% 100% 157%
12 80.5% 100% 103%
14 96% 103% 122%
16 80% 100% 120%
18 90% 100% 137%
20 80% 100% 118%
22 89% 102% 121%
24 80% 100% 111%

Table 2: Xpanders vs. fat trees (FT), flow-level simulations.
Percentages are Xpander/FT.

5.1 Better Performance, Less Equipment
We examine uniform fat tree topologies for every even de-

gree (number of ports per switch) between 8 and 24. Unlike
a fat tree, which is uniquely defined for a given switch port-
count, Xpander gives the datacenter designer much greater
flexibility (see discussion in Section 3.1). We identify, for
each fat tree in the above range, an Xpander with much fewer
(roughly 80-85%) switches that supports the same number
of servers with at least the same level of server-to-server
throughput.4 See details in Table 2.

5.2 Simulation Results
Throughput. We evaluate the all-to-all throughput of Xpan-
der and fat trees. We show in Table 2 the all-to-all server-
to-server throughput in fat trees and Xpanders without any
link failures. As can be seen in Table 2, Xpander is able to
achieve comparable, if not better, server-to-server through-
put than fat trees even with as few as 80% of the switches.
Table 3 shows the results of extensive packet based-simulations
using the MPTCP network simulator for Xpander and fat
trees with k = 32 and k = 48, containing 8K and 27K
servers, respectively. Again, Xpander networks achieve sim-
ilar or better performance to that of fat trees, with signifi-
cantly fewer switches.

To explore how Xpander and fat trees compare for other
traffic patterns, we also simulate a fat tree of 8K servers
(i.e., k = 32) and its matching Xpander under the follow-
ing “Many-to-One” scenario using the MPTCP packet level
simulator. We randomly select 10% of the servers as our des-
tinations and for each such server we select at random x% of
the servers to generate traffic destined for that server, where
x=1%, 1.5%, 2%, 2.5% and 3% (1% is roughly 80 servers).
Table 5 presents the averaged results of 4 such simulations.
We conclude that, once again, Xpander provides the same
level of performance with less network equipment.

Robustness to failures. We compute the all-to-all server-to-
server throughput in fat trees and Xpanders after failing X
links uniformly at random, where X ranges 0% to 30% in
4We now consider server-to-server all-to-all throughput and
not switch-to-switch all-to-all throughput, since in a fat tree
not all switches originate traffic.



(a) d=14 (b) d=32

Figure 9: Server-to-server throughput degradation with failures. All-to-All flow level (on the left) and Random-Shuffle packet
level (on the right

Tested Topology Random Shuffle One-to-Many Many-to-One Big-and-Small
Avg Max Avg Max Avg Max Avg Max

Xpander 19.66 58.86 79.52 104.03 70.09 90.88 28.66 120.21
FatTree (TCP+ECMP) 26.7 102.86 80.72 89.94 80.79 91.51 42.72 220.1
FatTree (MPTCP+ECMP) 17.94 105.71 78.18 138.5 69.56 91.31 31.75 180.64

Table 4: Xpander and fat trees under various traffic matrices. Values are given in seconds and indicate the average finishing
time for transmission.

Fat Tree
Degree #Switches #Servers Packet Simulation

Throughput
32 90% 98.5% 110%
48 88% 100% 102%

Table 3: Xpanders vs. fat trees, packet-level simulation
results. Percentages are Xpander/FT.

Percentage Of Servers
Routing To Each Destination

Packet Simulation
Throughput

1% 99.6%
1.5% 99.3%
2% 101%

2.5% 103%
3% 103%

Table 5: Xpanders vs. fat trees, 10% of the servers are
selected as destinations. Percentages for throughput are
Xpander/FT.

increments of 3%. We repeated this for fat trees of all even
degrees in the range 8-24 and the corresponding Xpander
networks from Table 2. Figure 9(a) describes our (represen-
tative) results for fat trees of degree k = 14 (vs. Xpander).
We further simulate a fat tree with k = 32, containing 1280
switches and 8192 servers, against an Xpander containing
90% of the switches and 98.5% of the servers, under a random-
shuffle permutation matrix after failing S links uniformally
at random, where S ranges from 0% to 30% in increments
of 5%. The results of this simulation are described in Fig-

ure 9(b). Both results (flow-level and packet-level alike)
show that Xpander indeed exhibits better resiliency to fail-
ures than fat tree. We note that the smaller gap between
Xpander and fat tree in the MPTCP simulations can be ex-
plained by the fact that the per switch degree is higher and
so naturally routing is less affected by failures.

5.3 Xpander Emulation
To show that an Xpander with significantly less switches

can achieve comparable performance to fat trees, we used
mininet [27] and the RipL-POX [4] controller to simulate fat
tree [6] networks under various workloads, and for two rout-
ing & congestion control schemes: (1) ECMP with TCP and
(2) K-shortest-paths with K = 8 and MPTCP with 8 sub-
flows. We also simulated Xpanders for the same workloads
under K-shortest-paths with K = 8 and MPTCP with 8 sub-
flows. These simulations were performed on a VM running
Ubuntu 14.04 with MPTCP kernel version 3.5.0-89 [11]. We
chose, for compute and scalability constraints, to evaluate
a fat tree network of degree 8, which contains 80 switches
and 128 servers. We tested against this fat tree topology
the corresponding Xpander datacenter from Table 2, which
contains only 64 switches and the same number of servers.
All links between switches in both networks are of capacity
1Mbps.

The workloads considered are: (1) Random Shuffle, where
the 128 servers are divided into two halves, and each mem-
ber of the first half sends a 1Mb file to a (unique) randomly
chosen member of the other half; (2) One-to-Many, where
4 servers are randomly selected and these servers send a



#Ports per
Switch

(Sw2Sw / Total)

#Switches
(XPNDR / SF)

#Servers
(XPNDR / SF)

Bisection
Bandwidth

Cost
per node

Power
per node Expansion

5 / 8 18 / 18 (100%) 54 / 54 (100%) 86% 123% 114% 77%
7 / 11 48 / 50 (96%) 192 / 200 (96%) 67% 79% 81% 72%

11 / 17 96 / 98 (98%) 576 / 588 (98%) 98% 106% 104% 84%
17 / 26 234 / 242 (96%) 2,106 / 2,178 (96%) 102% 102% 100% 92%
19 / 29 340 / 338 (104%) 3,400 / 3,380 (104%) 103% 95% 94% 96%
25 / 38 572 / 578 (99%) 7,436 / 7,541 (98%) 109% 95% 94% 102%
29 / 44 720 / 722 (99%) 10,800 / 10,830 (99%) 118% 104% 102% 103%
35 / 51 1080 / 1058 (102%) 17,280 / 16,928 (102%) 119% 102% 100% 101%
43 / 65 1672 / 1682 (99%) 36,784 / 37,004 (99%) 117% 99% 96% 107%
47 / 71 1920 / 1922 (99%) 46,080 / 46,128 (99%) 122% 103% 101% 108%
55 / 83 2688 / 2738 (96%) 75,264 / 76,664 (98%) 119% 91% 88% 112%

Table 6: Xpander vs. Slim-Fly. The first column specifies the number of ports per switch used for switch-to-switch and the
total port count (for both Xpander and SF). Percentages are Xpander/SF.

Scenario Min Max Average
Random Shuffle 234% 83% 135%
One-to-Many 94% 138% 123%
Many-to-One 115% 86% 92%

Table 7: Results for the physical simulations, all values are
the averaged value of Xpander/FatTree.

1Mb file to 10 other randomly chosen (unique) hosts; (3)
Many-to-One, where 40 different servers send 1Mb file each
to 4 servers (10 sending servers per each receiving server);
and (4) Big-And-Small, which is similar to Random Shuffle,
only in addition each of 8 randomly chosen servers sends a
10Mb file to a unique other server. Our results are summa-
rized in Table 4. Observe that even with 80% of the switches,
Xpander provides comparable or better performance.

5.4 Implementation on a Network Testbed
To validate the above findings, we use OCEAN [3], an

SDN-capable network testbed composed of 13 Pica8 Pronto
3290 switches with 48 ports eac. We used the OCEAN plat-
form to experimentally evaluate two datacenter networks:
(1) a fat tree composed of 20 4-port switches, of which 8
are top-of-rack switches, each connected to 2 servers (16
servers overall), and (2) an Xpander consisting of 16 4-port
switches, each connected to a single server (again, 16 servers
overall). Observe that while both networks support the same
number of servers, the number of switches in the Xpander is
80% of the number of switches in the fat tree (16 vs. 20).
Similarly, the number of links connecting switches to other
switches in the Xpander is 75% that of the fat tree (24 vs.
32). Note, however, that the network capacity per server
in Xpander is much higher as the number of ToRs is higher
(16 vs. 8), and each ToR is connected to less servers (1 vs.
2) and to more other switches (3 vs. 1). Thus, intuitively,
the Xpander can provide comparable or better performance
with less network equipment. Our experiments on OCEAN
confirm this intuition.

ECMP routing and TCP are used to flow traffic in the fat
tree, whereas for the Xpander we use K-Shortest Paths, with
k = 3, and MPTCP with 3 subflows (and so on each of the
3 distinct paths between a source and a destination there is a
separate MPTCP subflow). We evaluate the min, max, and
average throughput under three different traffic scenarios:
(1) random shuffle, in which every server routes to a single
random destination, (2) many-to-one, in which a randomly
chosen server receives traffic from the other 15 servers, and
(3) one-to-many, in which a randomly chosen server sends
traffic to all other servers. To compute the throughput for
two communicating servers, an “endless” flow between these
servers is generated using of an iperf client and server and
the averaged throughput is computed after 10 minutes. Our
results for each simulation setting are averaged over 5 inde-
pendent runs.

Table 7 shows our results for the above three traffic sce-
narios (the rows) and for min, max, and average throughput
(the columns), where % are Xpander/FT. Xpander achieves
comparable or better results in each of the evaluated scenar-
ios (again, using only 80% of the network equipment).

6. XPANDER VS. SLIM FLY
We also contrast Xpander with Slim Fly, a recent proposal

from the world of high-performance computing (HPC). SF
leverages a graph-theoretic construction of low-diameter
graphs [33] (either diameter of 2, the situation most explored
in [8], or diameter of 3).

Intuitively, by decreasing the diameter, less capacity is
wasted when sending data, and hence overall performance is
higher. Indeed, [8] shows that SF outperforms existing and
proposed datacenter architectures, but performs worse than
random topologies, e.g., in terms of bisection bandwidth and
resiliency to failures.

When comparing SF to Xpander, we first note that the
low diameter of SF imposes an extremely strict condition
on the relationship between the per node degree d and the
number of nodes n: by requiring diameter 2, SF requires



d ≥ Ω(
√
n). (Importantly, d here represents only the ports

used to connect a switch to other switches, and so, to sup-
port servers, the actual port count must be even higher.) This
imposes a strict limit on the scalability of Slim Fly. Xpander
topologies, on the other hand, exist for essentially any com-
bination of n and d and, in particular, can be used for arbi-
trarily large datacenters even with a fixed per-switch degree
d.

Not only is Xpander more flexible than SF in support-
ing more nodes with smaller degrees, but it exhibits better
performance than SF as the network grows, even in the de-
gree/node regimes in which SF is well-defined. We used
the simulation framework published in [8] to compare SF
to Xpander in terms of performance and costs. The METIS
partitioner [26] was used for approximating bisection band-
width (as in [8]) and the code from [8] for cost and power
consumption analysis (using the switch/cable values in [8]).
We also computed the expansion for both categories of graphs
using spectral gap computation, which approximates edge
expansion. See our results for Xpanders in Table 6 and for
Jellyfish in [5].

Our findings suggest that, in fact, the good performance of
SF can be attributed to the fact that it is an expander datacen-
ter. We back these empirical results with the new theoretical
result presented in Section 2, which shows that a Slim-Fly
network of degree d and diameter 2 has edge expansion at
least d

3 − 1, and is thus not too far from the best achievalbe
edge expansion of d

2 .
We argue, however, that by optimizing the diameter-size

tradeoff, Slim Fly sacrifices a small amount of expansion
leading to worse performance than random networks and
Xpander as the network gets larger. Our results reveal that
for networks with less than 100 switches, SF is a better ex-
pander than both Xpander and Jellyfish and exhibits better
bisection bandwidth. This advantage is reversed as the net-
work size increases and in turn Xpander and Jellyfish be-
come better expanders. Our results thus both validate and
shed light on the results in [8], showing why random graphs
(and Xpander) outperform SF for large networks.

We also show (Table 6) that Xpander’s cost and power
consumption are comparable to those of SF.

7. DEPLOYMENT
We grapple with important aspects of building Xpander

datacenters: (1) equipment and cabling costs; (2) power con-
sumption; and (3) physical layout and cabling complexity.
We first present a few high-level points and then the results
of a detailed analysis of Xpander deployment in the context
of both small-scale (container-sized) datacenters and large-
scale datcenters. We stress that our analyses are straight-
forward and, naturally, do not capture all the intricacies of
building an actual datacenter. Our aim is to illustrate our
main insights regarding the deployability of Xpanders, demon-
strating, for instance, its significant deployability advantages
over random datacenter networks like Jellyfish.

Physical layout and cabling complexity. As illustrated in
Figures 2 and 3, an Xpander consists of several meta-nodes,

each containing the same number of ToRs and connected to
each other meta-node via the same number of cables. No
two ToRs within the same meta-node are connected. This
“clean” structure of Xpanders has important implications:
First, placing all ToRs in a meta-node in close proximity (the
same rack / row(s)) enables bundling cables between every
two meta-nodes. Second, a simple way to reason about and
debug cabling is to color the rack(s) housing each meta-node
in a unique color and color the bundle of cables interconnect-
ing two meta-nodes in the respective two-color stripes. See
the illustration in Figure 2.

Thus, similarly to today’s large-scale datacenters [44],
Xpander’s inherent symmetry allows for the taming of ca-
bling complexity via the bundling of cables. Unlike Xpander
networks, whose construction naturally induces the above
cabling scheme, other expander datacenters (e.g., Jellyfish [46])
do not naturally lend themselves to such homogeneous bundling
of cables. Our strong suspicion, backed by some experimen-
tal evidence, is that Jellyfish does not (in general) allow for
a clean division of ToRs into equal-sized meta-nodes where
every two meta-nodes are connected by the same number
of cables (forming a matching), as Xpander does. Unfor-
tunately, proving this seems highly nontrivial. Identifying
practical cabling schemes for other expander datacenters is
an important direction for further research.

Equipment, cabling costs, and power consumption. As
shown in Table 2 and validated in Sections 5.3 and 5.4,
Xpanders can support the same number of servers at the
same (or better) level of performance as traditional fat tree
networks with as few as 80% of the switches. This has
important implications for equipment (switch/serve) costs
and power consumption. We show, through analyzing cable
numbers and lengths, that the reduced number of inter-ToR
cables in Xpanders, compared to Clos networks/fat trees,
translates to comparable or lower costs. In addition, be-
yond the positive implications for cabling complexity, the
bundling of cables afforded by Xpander also has implica-
tions for capex and opex costs. As discussed in [44], manu-
facturing fiber in bundles can reduce fiber costs considerably
(by nearly 40%) and expedite deployment of datacenter fab-
ric by multiple weeks.

Analyzing deployment scenarios. We analyze below two
case studies: (1) small clusters (“container datacenters”),
and (2) large-scale datacenters.

7.1 Scenario I: Container Datacenters
As several ToR switches can sometimes be placed in the

same physical rack along with the associated servers, we dis-
tinguish between a Virtual Rack (VR), i.e., a ToR switch and
the servers connected to it, and a Physical Rack (PR), which
can contain several VRs. Our analyses assume that all racks
are 52U (this choice is explained later) and are of standard
dimensions, switches are interconnected via Active-Optical
Cables (AOC), and servers are connected to ToR switches
via standard copper cables.

We inspect 2-layered folded-clos network (FCN) of de-
grees 32 and 48 (see [5]). We select, for each of these two



#Switches #Servers #Physical Racks #Cables Cable Length
All-to-All

Server to Server
Throughput

k=32 42 vs. 48
(87.5%)

504 vs. 512
(98.44%)

11 vs. 11
(100%)

420 vs. 512
(82%)

4.2km vs. 5.12km
(82%) 109%

k=48 66 vs. 72
(91.76%)

1,056 vs. 1,152
(91.67%)

22 vs. 25
(88%)

1056 vs. 1152
(91.6%)

10.56km vs. 11.52km
(91.6%) 142%

Table 8: Xpander vs. 2-FCN. Percentages are Xpander/2-FCN

Switch
Degree #Switches #Servers #Physical Racks #Cables Cable Length

(m)
Ttl. Space

(ft2)
30 vs. 32
(93.75%)

1,152 vs. 1,280
(90%)

8,064 vs. 8,192
(98.44%)

192 vs. 221
(86.87%)

13,248 vs. 16,348
(80.85%)

220.8k vs. 174k
(127%)

3.24k vs. 4k
(81%)

Table 9: Xpander vs. fat tree. Percentages are Xpander/fat tree

(a) 2FCN
(b) Xpander

Figure 10: A k = 48 2FCN network topology and the
matching Xpander

topologies, a matching Xpander with better performance.
We consider 52U racks as these provide the best packing
of VRs into PRs for Clos networks. Specifically, 3 VRs fit
inside each physical rack for the k = 32 Clos network and 2
VRs fit into a PR for k = 48 Clos network. The two match-
ing Xpanders are created via a single 2-lift. As each VR in
an Xpander contains less servers than that of the comparable
2-FCN network, more VRs can reside in each physical rack
(for both degrees). We present the physical layouts of both
the 2-FCNs and Xpander networks in Figure 10 and [5], and
our analysis in Table 8.

Clearly, the use of less switches in Xpanders immediately
translates to a reduction in costs. An Xpander network of
switch-to-switch degree d, where each meta-node contains x
ToRs, requires x · d·(d+1)

2 AOC cables, whereas for a 2-FCN
of switch degree (total port count) k there are k2

2 cables. The
lower number of AOC cables in Xpanders, assuming 10m-
long AOC cables, yields the cable lengths in Table 8. Im-
portantly, the marginal cost of AOC cables greatly decreases
with length and so the reduction in number of cables trans-
lates to potentially greater savings in costs.

Figure 11: A sketch of an Xpander of Xpander graphs

A detailed analysis appears in [5].

7.2 Scenario II: Large-Scale Datacenters
We now turn our attention to large-scale datacenters. Specif-

ically, we analyze the cost of building a uniform-degree fat
tree with port-count k = 32 per switch (and so of size 1280
switches and 8192 servers) vs. a matching Xpander. We first
present, for the purpose of illustration, the physical layout
of each network in a single floor. We point out, however,
that while deploying a fat tree (or the matching Xpander) of
that scale in a single room might be physically possible, this
might be avoided in the interest of power consumption and
cooling considerations. We hence also discuss large-scale
datacenters that are dispersed across multiple rooms/floors.

7.2.1 Single Floor Plan
A fat tree with total port count k = 32 per node contains

32 pods and d2

4 = 256 core switches, where each pod con-
tains 16 ToRs, 512 servers and 16 aggregation switches, to-
taling in 8192 servers, 512 ToRs, and 512 aggregation switch-
es. We present a straightfoward, hypothetical floor plan for
deploying such a fat tree in [5]. Again, we assume 52U
physical racks as this is the most suitable for packing VRs
in the fat tree, allowing us to fit 3 VRs in each PR and con-
sequently an entire pod (including the aggregation switches)



in a row of 6 PRs. We can place 2 such pods (rows) in-
side a hot/cold-aisle containment enclosure, resulting in 16
such enclosures for the entire datacenter. We end up with 12
rows, each containing exactly 18 physical racks (which, in
turn, can house 3 pods), and core switches placed in 5 ad-
ditional physical racks. We assume that, within a pod, 5m
AOC cables are used to connect each ToR to its aggrega-
tion layer switches. Each of the 2-pod enclosures can be
connected to the row of core switches using combination of
10m/15m/20m/25m AOC cables, depending of their prox-
imity.

We compare this fat tree network with an Xpander net-
work of degree 23 (k = 30-port switches instead of k = 32),
constructed using four 2-lifts and another 3-lift. See the side
by side comparison of the two networks in Table 9. This
specific Xpander houses 8064 servers under 1152 ToRs and
consists of 24 meta-nodes, each containing 48 VRs with 7
servers per VR. We present a possible floor plan for deploy-
ing this Xpander in [5]. Using 52U racks, 6 VRs can be
packed into a physical rack, resulting in a total of 8 racks
per meta node. Again, each hot/cold-aisle containment en-
closure houses 2 rows, resulting in 16 52U racks (8 in each
row). We present the physical layout analysis for both net-
works in Table 9. See a more detailed analysis in [5].

7.2.2 Xpander of Xpanders
So far, our analysis of large-scale Xpanders assumed that

the whole datacenter network fits in a single floor. This
might not be feasible due to power supply and cooling con-
straints. To this end, the Xpander must be “broken” into
several, dispersed, components. One approach to do so is
to place a single Xpander-pod, or several such pods, in a
separate floor. Another possible approach is constructing
an Xpander network interconnecting smaller Xpander net-
works, as illustrated in Figure 11: (1) each smaller Xpander
will be housed in a single container/room/floor and be con-
structed as illustrated above; (2) several (higher-degree) switches
in each of these Xpanders will be designated as “core switch-
es”; (3) these core switches will then be interconnected through
an Xpander overlay network. Since, as evidenced by our re-
sults, an Xpander provides near-optimal performance guar-
antees (throughput, failure resiliency, average path length,
etc.), this construction can yield good peformance both within
each smaller Xpander and between the Xpander networks.

8. RELATED WORK
Datacenter networks. Datacenters have been extensively
researched from many different angles, e.g., throughput opti-
mization [45, 40, 25], failure resiliency [29, 20, 19], and ex-
pandability [46, 15]. In particular, many datacenter topolo-
gies have been proposed, including Clos networks [6, 21,
36], hypercubes [22, 50], small-world graphs [43], and ran-
dom graphs [46, 45].

Expanders. Expanders play a key role in a host of ap-
plications, ranging from networking to complexity theory
and coding. See the survey of Hoory, Linial, and Wigder-
son [24]. A rich body of literature in mathematics and com-

puter science deals with constructions of expanders, e.g.,
Margulis’s construction [32], algebraic constructions [30],
and constructions that utilize the so-called “zig-zag prod-
uct” [41]. Our construction of the Xpander datacenter topol-
ogy utilizes the notion of 2-lifting a graph, introduced by
Bilu and Linial [9, 31]. Utilizing expanders as network topolo-
gies has been proposed in the context of parallel comput-
ing and high-performance computing [47, 14, 13, 8], optical
networks [39] and also for peer-to-peer networks and dis-
tributed computing [38, 37]. Our focus, in contrast, is on
datacenter networking and on tackling the challenges that
arise in this context (e.g., specific, throughput-related per-
formance measures, specific routing and congestion control
protocols, costs, incremental growth, etc.).

Relation to [48]. Our preliminary results on Xpander ap-
peared at HotNets 2015 [48]. Here, we provide a deeper
and much more detailed evaluation of the merits of expander
datacenters in general, and of Xpander in particular, includ-
ing (1) implementation and evaluation on the OCEAN SDN
testbed [3], (2) comparison of Xpander to Slim-Fly includ-
ing theoretical results and simulations, (3) many additional
simulation results with the MPTCP simulator for Xpander
and fat tree, (4) results for path-lengths, diameter and and
incremental growth, (5) results for bisection bandwidth of
Xpander, and (6) a detailed discussion of Xpander’s deploy-
ment scenarios.

9. SUMMARY
We showed that expander datacenters offer many valuable

advantages over traditional datacenter designs and that this
class of datacenters encompasses state-of-the-art proposals
for high-performance datacenter design. We suggested prac-
tical approaches for building such datacenters, namely, the
Xpander datacenter architecture. We view Xpander as an
appealing and practical alternative to traditional datacenter
designs.
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[33] MCKAY, B. D., MILLER, M., AND
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